

Al₂O₃ Reduction in N₂–H₂ RF Plasma

Next-Generation Clean Aluminium Production

W W W . P L A S M A C O M B U S T I O N . C O M

CONTENT

01

About Us

02

Challenge

03

Technology

04

Our Vision

05

Our Process

06

Chemistry

07

Energy

08

Safety

09

Environment

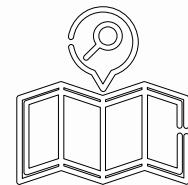
10

Scalability


OUR COMPANY

1,500 plasma
products in
operation

chemically pure, hi-
temp RF plasma


from vacuum
to 5 bar of
pressure

air, He, Ar, N₂ ,
CO₂, steam and
different blends

5 continents

13 countries

certified

Universities
30

Corporations
18+

Space Agencies
7

National Labs
5

GE Aerospace

United Technologies

LEARN MORE

ABOUT OUR FOUNDER

Dr. Igor Matveev is a globally recognized expert in Plasma-Assisted Technologies with 3 published books and over **1,500 plasma systems** developed under his leadership and deployed around the world.

He received his Ph.D. in Mechanical Engineering in 1984 with a dissertation titled "Development and Implementation of Plasma Ignition Systems for Naval Gas Turbines", which laid the groundwork for his pioneering work in plasma-assisted technologies.

Since 2003, Dr. Matveev has served as President and CEO of **Applied Plasma Technologies** in Marshall, Virginia, driving innovation in high-power plasma systems for industrial, energy, and environmental applications.

His commitment to advancing the field extends to academia and professional service. Since 2004, he has been a **Guest Editor for the IEEE Transactions on Plasma Science** special issues on Plasma-Assisted Technologies. He also served as Organizing Committee Chair for the 2nd through 12th International Conference on Plasma-Assisted Technologies (ICPAT).

THE CHALLENGE: HALL-HÉROULT PROCESS

For nearly **140 years**, the Hall-Héroult process has dominated aluminium production. But this century-old method is reaching its theoretical limits: it consumes on average **14-15 MWh per ton*** of aluminium, generates **1.6-2.0 tons of CO₂ per ton**, and releases powerful greenhouse gases (**CF₄ and C₂F₆** with a global warming potential up to **9,200 times higher than CO₂**).

In addition, it produces **toxic HF emissions** and hazardous spent pot lining (SPL).

**one of the world's leading Al producer confirmed number as 14.6MWh/t*

OUR VISION

We envision a truly **clean aluminium** production process — zero emissions, powered by **renewable electricity**, and operating within a **closed H₂–H₂O cycle**.

Our **modular, scalable** plasma reactors **eliminate carbon and fluorine**, while producing high-value **AlN ceramics as a by-product**.

This approach aligns directly with **global ESG strategies** and **net-zero targets**.

[LEARN MORE](#)

TECHNOLOGY

Overview:

- Plasma reduction of Al_2O_3 has been known since the 1960s.
- RF N_2/H_2 plasma produces **atomic hydrogen**, enabling **rapid surface reduction** of molten alumina.
- The concept was proven, but past technologies lacked **efficiency**, **control**, and **scalable quenching**.
- Industrial viability requires **high-enthalpy plasma**, **atomic H flux**, **continuous feed**, and **ultra-fast quenching**

»» “The chemistry has been known and demonstrated. The challenge was engineering scalability.”

Historical challenges:

- Low-efficiency RF power supplies ($\leq 40\%$) → industrial energy cost impractical
- Argon-dominated plasmas → weak heat transfer, poor H_2 activation, low conversion
- No viable quenching technology → rapid re-oxidation of molten aluminum droplets
- MW-scale electrode-less RF/ ICP plasma systems were experimental only

1962-1965

1968-1971

1970-2000

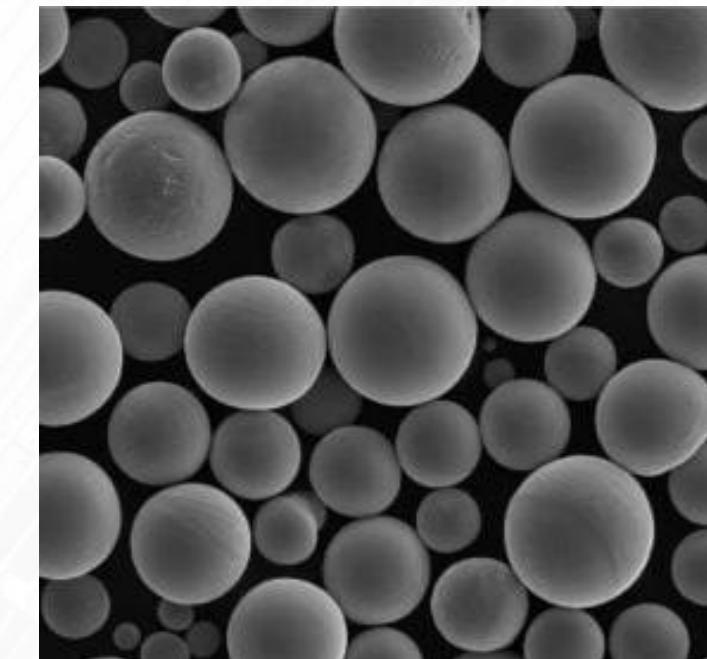
2000-2020

2020-2025

First plasma reduction experiments (Grosse, Stokes)

RF plasma reduction of Al_2O_3 demonstrated (Rains, Univ. Michigan)

Continued lab-scale studies; scalability remains unsolved


Advancements in diagnostics, ceramics, modeling; still no industrial path

Solid-state RF power ($>95\%$ efficiency), high-enthalpy N_2/H_2 plasma, ultra-fast quenching → first viable industrial configuration

WHY IT WORKS NOW

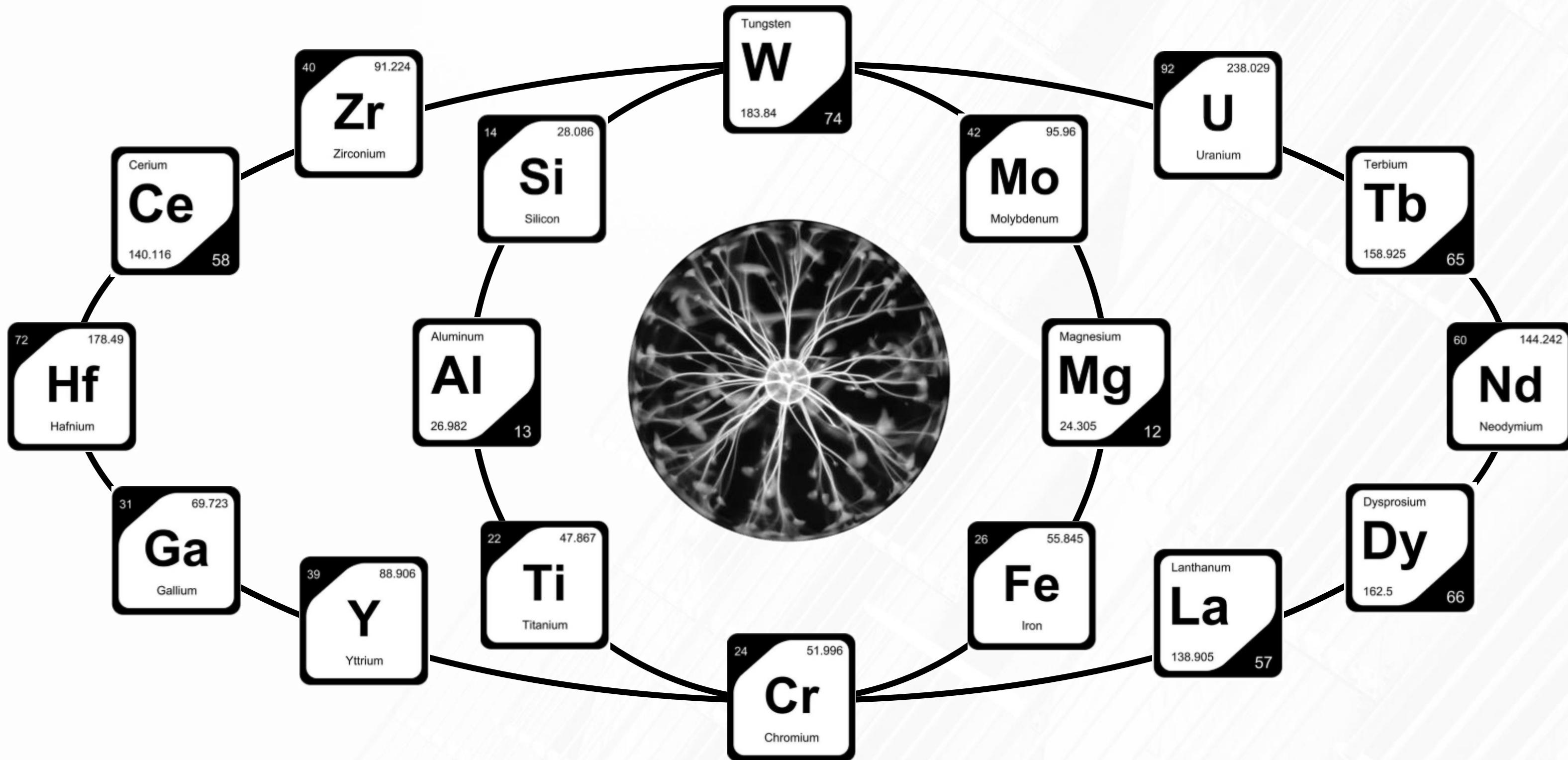
Power

MW-scale solid-state RF power
~95% efficiency
Industrial and scalable (1-15MW)

Plasma chemistry

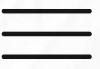
N_2/H_2 plasma gas
atomic hydrogen,
rapid reduction of Al_2O_3
advanced phases separation.

Quenching


10^5-10^6 K/s cooling of Al
droplets. Prevents re-oxidation,
stabilizes the metal/ powder

Validation & IP

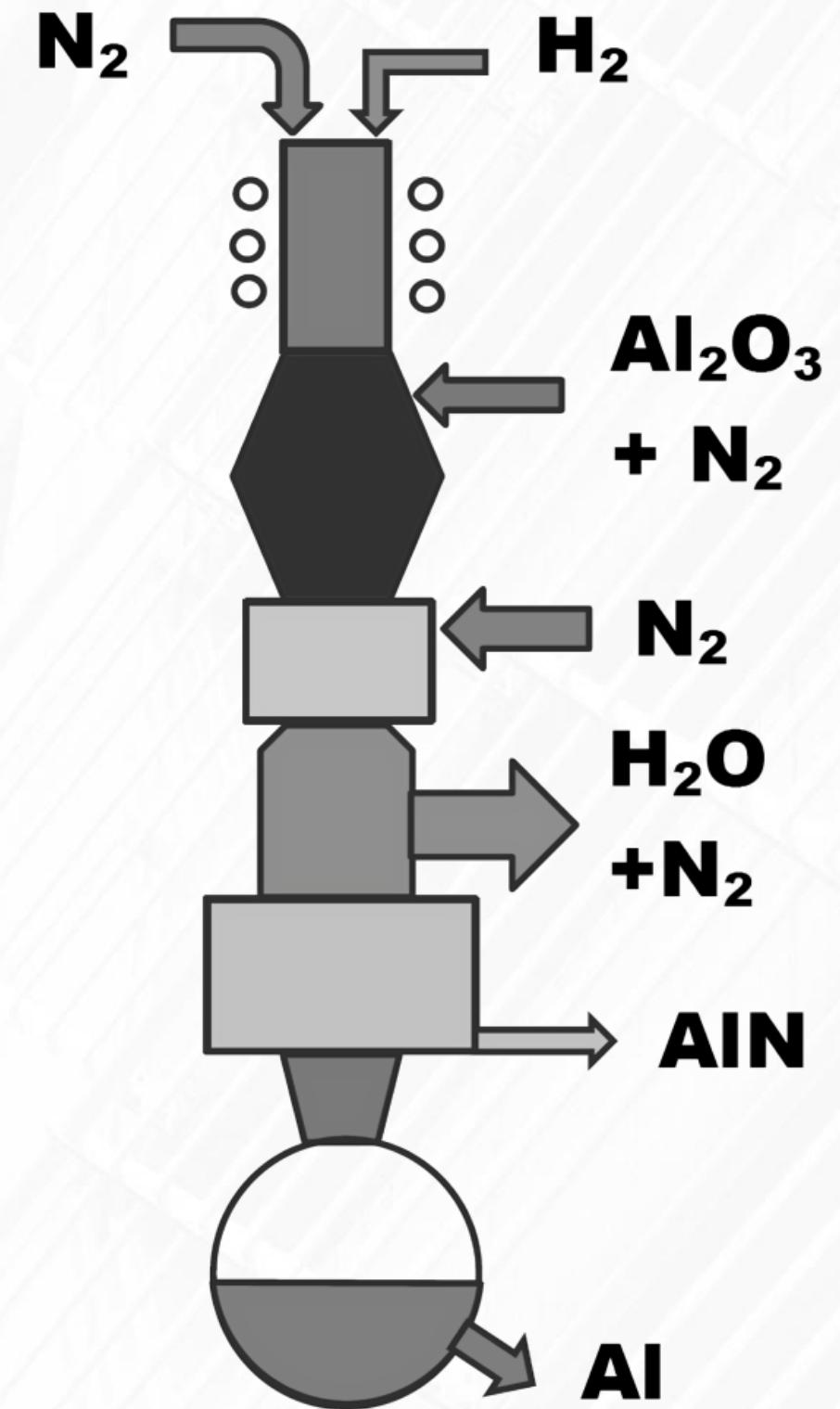
Patented in 2025 – process,
reactor and quench architecture
Confirmed by RUSAL, Stanford,
Princeton, NTUA, Metlen, Alba.



UMBRELLA TECHNOLOGY

PROCESS OVERVIEW

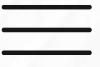
FEEDSTOCK


$\text{N}_2, \text{H}_2, \text{Al}_2\text{O}_3$

FLOW

RF Torch → Reactor →
Quenching Module →
Separator → Furnace

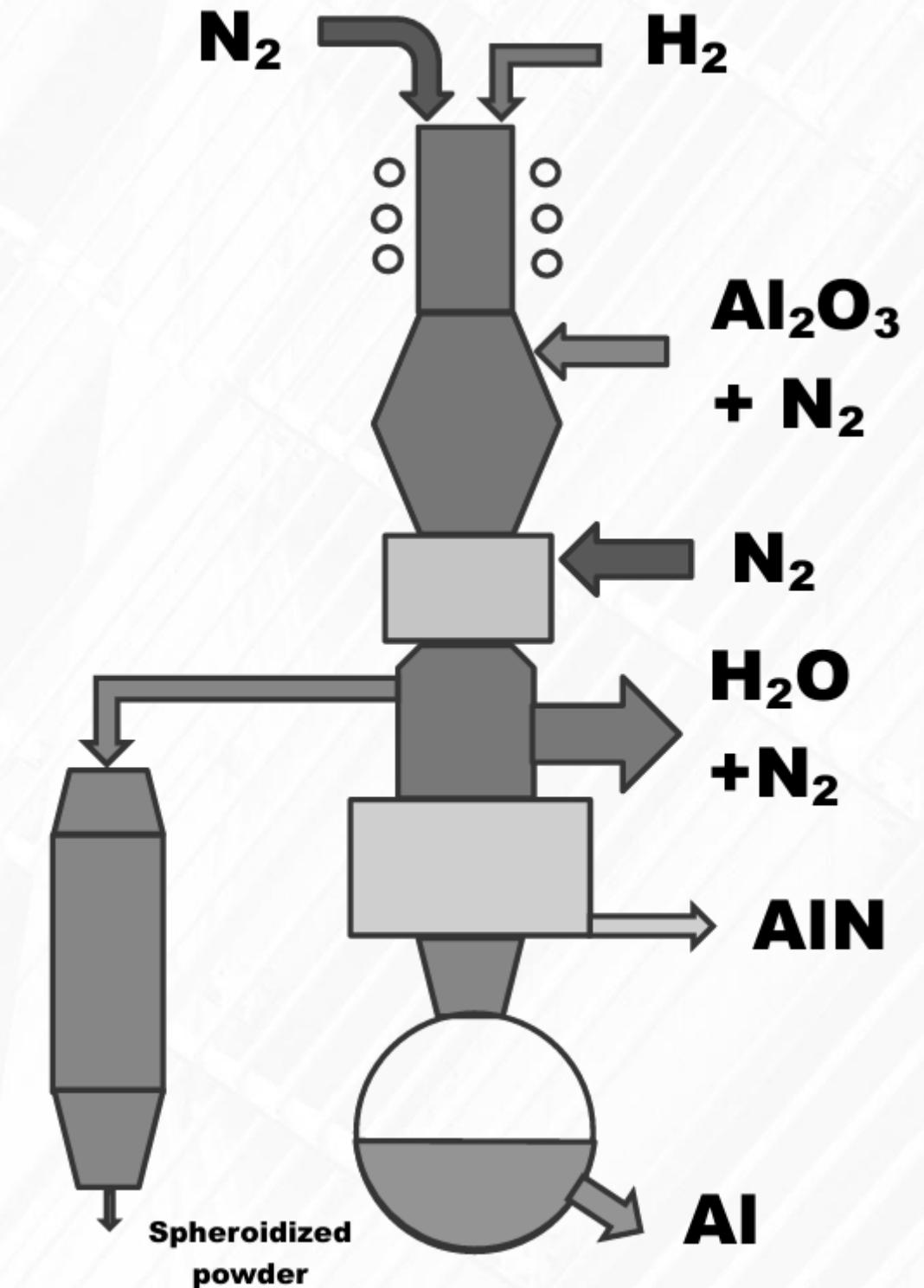
OUTPUTS


Aluminium,
AlN ceramics,
Water, Nitrogen

Operation at elevated pressure (up to ~5 bar) enables kinetics and control; direct molten Al feed to furnace reduces remelt losses.

PROCESS OVERVIEW

FEEDSTOCK


$\text{N}_2, \text{H}_2, \text{Al}_2\text{O}_3$

FLOW

RF Plasma →
Alumina injection →
Metal microdroplets →
Rapid quenching →

OUTPUTS

Spherical powder, Water,
Nitrogen

Operation at elevated pressure (up to ~5 bar) enables kinetics and control; direct molten Al feed to furnace reduces remelt losses.

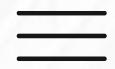
ENERGY EFFICIENCY – PLASMA TORCH

METAL

$$\eta \leq 70\%$$

Traditional metallic torches (known since the 1950s–60s) suffer from **eddy current losses** (Foucault currents) and **high radiative heat flux**, wasting much of the input power.

CERAMICS


$$\eta \leq 85\%$$

The world's first ceramic plasma torch:
a breakthrough in energy efficiency and design

- **No eddy currents:** ceramic body is non-conductive.
- **~10% wall losses only** (vs 30–40% typical).
- Combined with **solid-state RF power supplies (95% efficiency)** → total system efficiency **>70%**, nearly **2x higher** than existing designs.

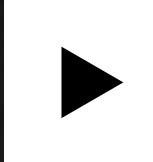
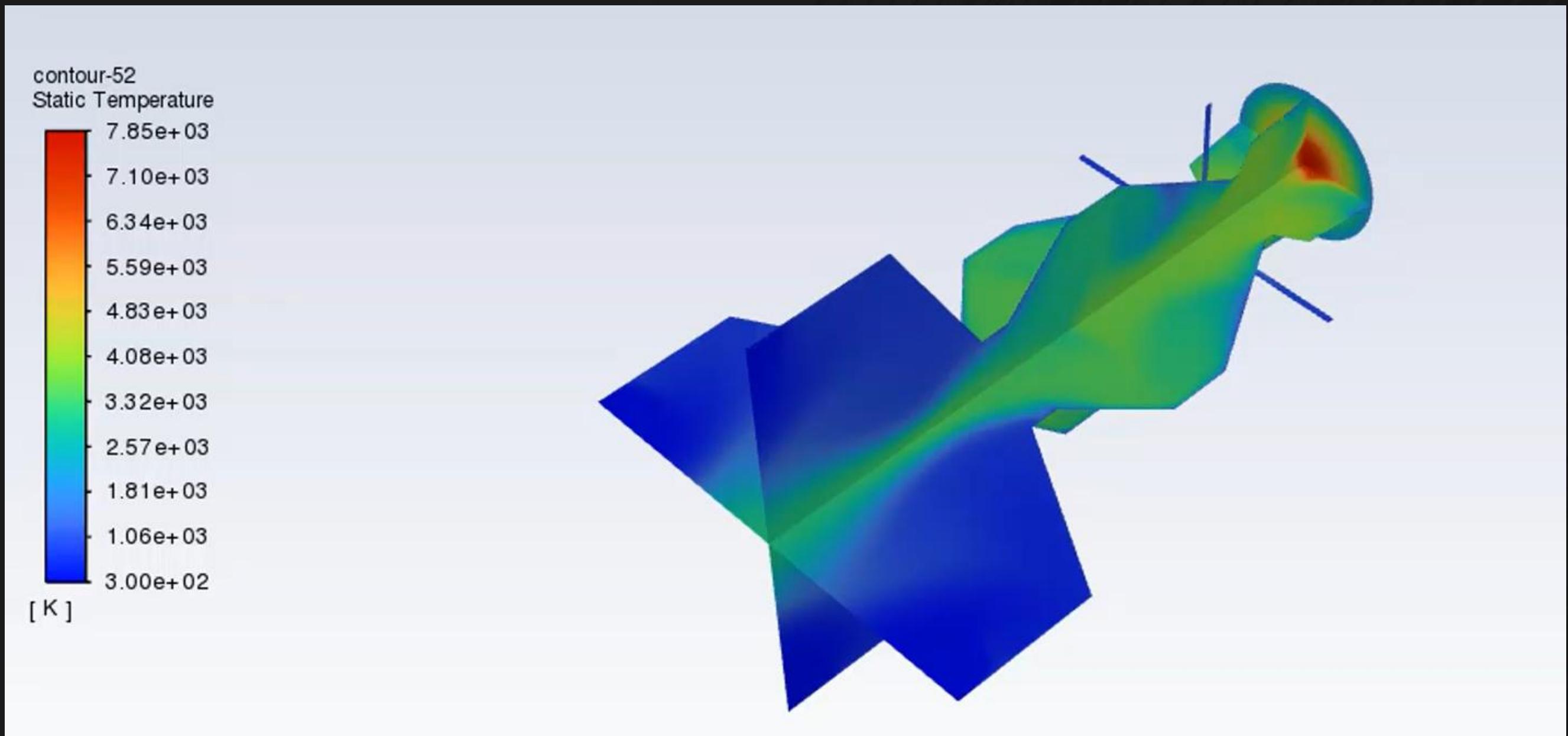
REACTION THERMOCHEMISTRY

REAGENT	REACTION	$\Delta H^\circ(\text{kJ/mol})$	Operational notes (+ endothermic, - exothermic)
Molecular H ₂	Endothermic $\text{Al}_2\text{O}_3 + 3 \text{H}_2 \rightarrow 2 \text{Al} + 3 \text{H}_2\text{O}$	+950 kJ/mol	<ul style="list-style-type: none"> - Requires bulk T often > 2000 °C for useful rates (slow kinetics at 2000 °C) - Large sensible heating of N₂ carrier (low energy efficiency) - Stronger back-recombination near surface, limited H coverage - At high T, N₂ activation ↑ → risk of AlN (esp. at low pressure) - Bigger reactor / longer residence; wall & radiative losses
Plasma/atomic H	Exothermic $\text{Al}_2\text{O}_3 + 6 \text{H} \rightarrow 2 \text{Al} + 3 \text{H}_2\text{O}$ activation – chemical return	1308 – 358 = 950 kJ/mol	<ul style="list-style-type: none"> + High reactivity at ≤ 2000 °C outlet (radicals at surface) + Chemical step returns ~358 kJ/mol as heat right at particles + Can localize energy input; fast quench possible + At elevated pressure, N₂ dissociation suppressed → less AlN + Better controllability (on/off, spatial focusing) and higher throughputs

Plasma/atomic H shifts energy from bulk sensible heating to dissociation near particle surfaces → faster kinetics at ≤~2000 °C outlet.

* Both routes sum to ≈ +950 kJ/mol from an H₂ feed. Plasma shifts where energy is spent (dissociation vs. sensible heating) and boosts kinetics at moderate outlet temperatures.

** The form of hydrogen determines whether external energy is needed, or the reaction is self-sustaining



*** Standard enthalpy at 298 K; H₂O as gas.

INFLUENCE OF HYDROGEN FORM ON THE THERMOCHEMISTRY OF Al₂O₃ REDUCTION

- High-temperature reduction in N₂–H₂ RF plasma
- Hydrogen consumed, oxygen bound as water
- Products: Aluminium + high-purity water

AL₂O₃ POWDER INJECTION INTO PLASMA STREAM

ENERGY BASELINE & OPTIMIZATION

Our plasma method reduces specific energy consumption to nearly half of today's industrial average, **approaching the thermodynamic minimum of ~6.5 MWh/t**.

- Thermodynamic minimum: ~6.5 MWh/t
- Hall-Héroult: 6.2 MWh/t theoretical, ~15 MWh/t industrial average
- **Plasma Pilot: ~12.1 MWh/t**
- **Plasma Optimized: ~6.7 MWh/t (close to theoretical limit)**

BY-PRODUCTS AND ADDED VALUE

Aluminium Nitride (AlN):

Corrosion resistance, high thermal conductivity, electrical insulation and almost no chemical reaction with any substance, widely used in petroleum, chemical 1, food and other industries that need contact with strong oxidant and reducing agent

Aluminium Nitride (AlN):

- High-value advanced ceramic
- Applications: electronics, automotive, defense
- **Market price: \$20,000–45,000 per ton**
- **Production: 1-10% adjustable as per preference**

SAFETY ASPECTS

- Hydrogen only inside reactor
- At outlet: $H_2 \rightarrow H_2O$, inert downstream
- No cryolite, no carbon anodes, no fluorides
- Standard industrial plasma safety protocols

Inside torch H_2 can be 40–45 vol%, ~33–35% in reactor; O_2 is consumed → downstream gas becomes non-flammable (below LEL risk).

ENVIRONMENTAL GAIN

Zero CO₂ emissions

Our process produces aluminium (or powder) without any carbon or fluorine emissions.

No CO₂ No PFCs (CF₄ and C₂F₆), no HF or SPL

Instead of toxic by-products, the outputs are aluminium (or powder), pure water, and valuable AlN ceramics.

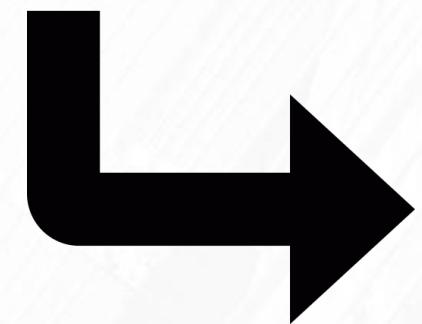
This is the world's first truly zero-emission aluminium (or powder) production pathway.

MORE INFORMATION

TECHNOLOGY COMPARISON

Feature	Hall–Héroult	RF Plasma Method
Operating temperature	~970 °C	1,700 – 2,500 K
Carbon emissions	High (CO_2 , CF_4 , C_2F_6)	Zero
Electrodes required	Carbon anodes	No electrodes
Byproducts	Toxic fluorides, SPL	AlN (high-value ceramics, potential for further processing)
Theoretical efficiency limit	Reached	Not yet reached, room to grow
Reaction medium	Molten cryolite	Gas-phase plasma

OPEX VS HALL-HÉROULT

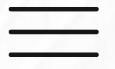

While energy and gas consumption are comparable to Hall-Héroult, our process eliminates major ancillary costs:

- Comparable in energy and gases
- No carbon anodes, no cryolite, no SPL disposal
- Closed water-hydrogen cycle reduces inputs
- Potential for lower long-term costs

Together, these savings create significantly lower long-term operating costs.

SCALABILITY

1MW = ~1 kt/ year


5MW = ~5 kt/ year

15MW = ~15 kt/ year

100 kt/year → 15-20 modules
CAPEX: ~\$4M per 1 MW module

PILOT PROJECT ROADMAP (1-12M)

Modeling & Design (M1-M7)

Modeling & design of reactor, quench, separation/filtration, collection furnace; **CAD complete; RFQs** for tundish, heated crucibles, ceramic filters; production budget.

Outcomes: TRL 5-6

APT-100 tests (M1-M5)

APT-100 tests with high-H₂ N₂-H₂ plasma; build **H₂ feeding & dilution** (≥ 0.72 kg/h) and **N₂ system** (≥ 180 kg/h); capture experimental data for scaling.

TRL 7 (pilot)

Fabrication & Assembly (M4-M12)

Fabrication & assembly of metal/ceramic parts with coatings; procurement/tuning of feedstock feeders; tundish & tools; **cold tests** (feed mixing, transport gas \rightarrow Al₂O₃ optimization).

TRL 8-9 (industrial)

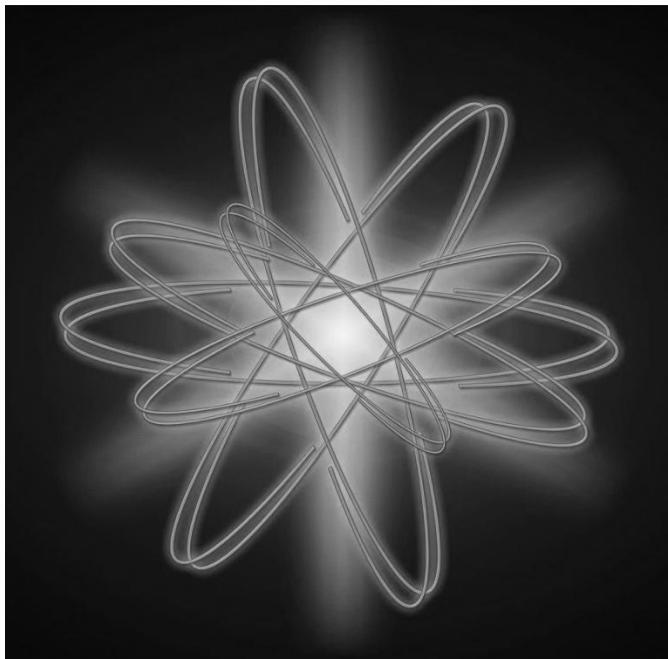
DELIVERABLES

Key Deliverables:

- Operational N₂ (≥ 180 kg/h) and H₂ (≥ 0.72 kg/h) systems; safe dilution unit
- Experimental data on high-H₂ N₂–H₂ plasma (APT-100)
- Complete CAD of pilot Al₂O₃ reduction system; production budget
- RFQs: tundish, heated crucibles, ceramic filters
- Fabricated & assembled system; optimized feed mixing regime

Outcomes & TRL Progress:

- Validated process data for industrial scaling
- Industrial Deployment Unit (IDU) ready for integrated tests
- Path to TRL 7 at end of M5; TRL 8–9 in M12 via pilot integration



M5: H₂/N₂ systems operational; dilution system ready

M7: Complete CAD; RFQs issued

M12: System fabricated & assembled; ready for tests

Q&A SUMMARY – TECHNICAL & PROCESS

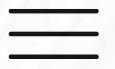
Energy

6.7 MWh/t (optimized)
15 MWh/t (Hall-Héroult)

Gas consumption

$\text{H}_2 = 112 \text{ kg/t Al}$
 $\text{N}_2 = 0.2\text{--}6 \text{ t/t Al}$

Mass production


1–5–15 MW units
1–15 kt/year

Safety

H_2 only inside reactor
inert downstream

Q&A SUMMARY – ECONOMICS & ESG


CAPEX

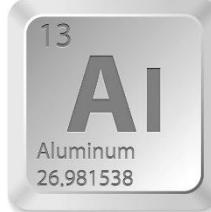
~\$4M per 1 MW module
APT covers plasma part

OPEX

Comparable to Hall-Héroult
lower in ancillary costs

By-Products

AlN (60–80 t/year per MW
\$20k–45k/t market


Environmental Gain

Zero CO₂, PFC, HF, SPL
by-product water cycle

CLOSING & CALL FOR PARTNERSHIP

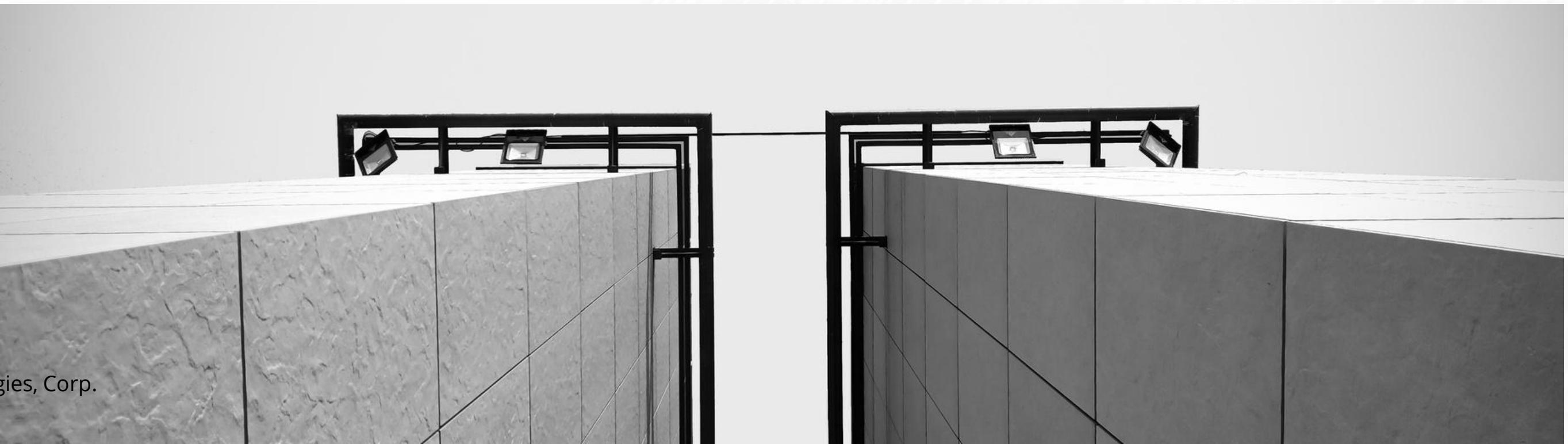
Next-generation clean aluminium production

Our RF plasma process offers emission-free, modular, and scalable aluminium (powder) production for the net-zero era.

Zero-emission, modular, scalable process

No CO₂, no fluorine, no SPL — only aluminium (powder), water, and valuable AlN. Fully aligned with ESG and decarbonization goals.

Strategic partnership opportunity


By joining forces, we can pioneer the future of aluminium (powder) production and set a new global benchmark for green metallurgy — especially meaningful given commitment to a **30 % reduction in emissions by 2035**, en route to **net zero by 2060**.

THANK YOU

Follow us and learn more about our recent development

OUR CONTACT

Phone : +1 703 340 5545 (US), +971 55 318 8149 (UAE)

Website : www.plasmacombustion.com

Email : igor@plasmacombustion.com

max@plasmacombustion.com

Address : 4460 Whiting Road, Marshall, VA 20115, US

