Nanosecond-scale Processes in a Plasma Pilot for Ignition and Flame Control

Yu. D. Korolev, I. B. Matveev

Institute of High Current Electronics, 634055 Tomsk, Russia
Applied Plasma Technologies, Falls Church, VA, 22046 USA

Outline of the presentation

• Introduction and statement of problem
• Non-steady state nanosecond scale processes in a gap with absence of constrained gas flow
• Non-steady state behaviour of the discharge in plasmatron-type system with external gas flow
• Features of the discharge in ignition unit of Tornado system
• Conclusion
Exit aperture: \varnothing 4-5 mm; Gas flow: $G = 0.1-1.5$ g/s; $C = 100-300$ pF

Most investigators speak of averaged electrical parameters of discharge

Averaged electrical parameters: $i_d \leq 0.3$ A, $V_d \geq 500$ V, $Q_d < 300$ W

With a low current this approach is incorrect in principle.
Principal physical idea for interpretation of the discharge burning modes in plasmatron

Essential role of non-steady state discharge phenomena in the processes of combustion initiation and flame stabilization

Yury D. Korolev, Igor B. Matveev

- Glow-type discharge in plasmatron is accompanied by so-called glow-to-spark transition process. As a result the high-current nanosecond spark discharge pulses are superimposed on the low-current background glow discharge

- Energy to the nanosecond spark discharge is delivered from the capacitance of connecting cable C

- The above regime is most efficient both for ignition and flame control
Example of regime for the plasmatron operation in air-propane mixtures

\[G(\text{air}) = 0.45 \text{ g/s}, \ i_d = 84 \text{ mA}, \ V_d = 630 \text{ V}, \ Q_d = 53 \text{ W}, \ W_d = 120 \text{ J/g}, \ \Delta T = 115 \text{ K} \]

<table>
<thead>
<tr>
<th>(G) (propane), g/s</th>
<th>(\alpha)</th>
<th>(i_d), mA</th>
<th>(V_d), V</th>
<th>(Q_d), W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>1.45</td>
<td>84</td>
<td>740</td>
<td>62</td>
</tr>
<tr>
<td>0.041</td>
<td>0.7</td>
<td>84</td>
<td>800</td>
<td>67</td>
</tr>
<tr>
<td>0.062</td>
<td>0.47</td>
<td>84</td>
<td>850</td>
<td>71</td>
</tr>
<tr>
<td>0.082</td>
<td>0.35</td>
<td>84</td>
<td>920</td>
<td>77</td>
</tr>
<tr>
<td>0.10</td>
<td>0.29</td>
<td>84</td>
<td>920</td>
<td>77</td>
</tr>
</tbody>
</table>

\[G(\text{air}) = 0.75 \text{ g/s}, \ i_d = 84 \text{ mA}, \ V_d = 840 \text{ V}, \ Q_d = 70 \text{ W}, \ W_d = 95 \text{ J/g}, \ \Delta T = 90 \text{ K} \]

<table>
<thead>
<tr>
<th>(G) (propane), g/s</th>
<th>(\alpha)</th>
<th>(i_d), mA</th>
<th>(V_d), V</th>
<th>(Q_d), W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>2.5</td>
<td>84</td>
<td>840</td>
<td>70</td>
</tr>
<tr>
<td>0.041</td>
<td>1.22</td>
<td>84</td>
<td>860</td>
<td>72</td>
</tr>
<tr>
<td>0.062</td>
<td>0.8</td>
<td>84</td>
<td>910</td>
<td>76</td>
</tr>
<tr>
<td>0.082</td>
<td>0.6</td>
<td>84</td>
<td>930</td>
<td>78</td>
</tr>
<tr>
<td>0.10</td>
<td>0.5</td>
<td>84</td>
<td>950</td>
<td>80</td>
</tr>
<tr>
<td>0.12</td>
<td>0.4</td>
<td>84</td>
<td>980</td>
<td>82</td>
</tr>
</tbody>
</table>

Averaged increase in temperature is extremely low \(\Delta T \approx 100 \text{ K} \)
However the burning is initiated and sustained in a wide range of \(\alpha \) (air to fuel ratio)
Voltage at the gap of plasmatron illustrating the non-steady state behavior of the discharge at a low average current $i_d = 80$ mA.

The further presentation is actually an interpretation of the non-steady state discharge behavior.
Experimental arrangement for the discharge investigation with a nanosecond time resolution in a gap with absence of constrained gas flow

Generator of nanosecond pulses based on coaxial lines

\[C_1 \text{ is the filtered capacitor of power supplier} \]

Interelectrode distance \(d = 0.2 \text{ mm, } p = 2 \text{ atm (nitrogen)} \)
\[R = (20-155) \text{ k}\Omega, \; C = 40 \text{ pF} \]

Essence of the experiments

- Recording the current and voltage waveforms with nanosecond time resolution
- Recording extremely low current at the stages of decayed plasma after a spark discharge
Voltage and current for the case when discharge gap does not completely recover its dielectric strength

In pause between pulses plasma from a preceding spark is still available in the gap

\[R = 155 \text{ k}\Omega, \quad C = 40 \text{ pF} \]

Single pulse of the spark channel with nanosecond time resolution
Formation of the spark channel in decayed plasma

\[R = 89 \, k\Omega, \quad V_A = 1.7 \, kV \]

\[R = 89 \, k\Omega, \quad V_A = 2.8 \, kV \]

To increase \(V_A \) means to increase a current in a pause between pulses
Temporal stages of the discharge:

arc discharge with cathode spot and spark formation in decayed plasma

\[R = 20 \text{ k}\Omega, \ V_A = 2.25 \text{ kV} \]

Arc cathode spot is not able to be sustained for a long time
Temporal stage of the discharge:
glow discharge, glow-to-spark transition, and *glow discharge*

\[R = 20 \, \text{k}\Omega, \, V_A = 2.4 \, \text{kV} \]
Temporal stages of the discharge: glow discharge, glow-to-spark transition, and spark in the decayed plasma

\[R = 20 \, \text{k}\Omega, \quad V_A = 2.4 \, \text{kV} \]
Glow-to-spark transition. What is it?

Summary of preceding data on constriction of glow discharge in gas lasers

Parameters of the glow discharge
\[d = 0.7 \text{ cm}, j = 500 \text{ A/cm}^2, p = 75 \text{ Torr} \]

\textit{Glow-to-spark transition (temporal stages)}

1 - Glow type discharge
2, 3, 4 - Arising of a cathode spot and attachment of a \textit{diffused channel} to the spot (glow-to-spark transition is not completed yet)
5, 6 – Propagation of a \textit{high-conductivity filamentary spark channel} along the diffused channel
The slides below are experimental data for discharge in plasmatron with external air flow

Exit aperture: \varnothing 4-5 mm; Gas flow: $G = 0.1$-1.5 g/s; $C = 100$-300 pF
Temporal measurements of current and voltage with nanosecond time resolution
Illustration of very first breakdown in plasmatron

- Oscillatory behavior of the current when spark discharge occurs
- High-conductivity spark channel forms in the gap

\[G = 0.1 \text{ g/s (} v_{\text{gas}} = 4 \text{ m/s)} \]
\[R_b = 13.6 \text{ k\Omega}, \quad C = 300 \text{ pF} \]
\[V_0 = 2.7 \text{ kV} \]

- Spark current \(i = 30 \text{ A} \)
- Current after discharging the capacitor \(C \) is limited by ballast resistor (\(i \approx 200 \text{ mA} \)
What happens in the gap after the very first breakdown

- **First stage:** Discharge current is gradually shifted from coaxial part of the cathode to the end part of the cathode

 glow-type discharge and glow-to-spark transitions (completed and non-completed)

- **Second stage:** Discharge current is attached to the end part of the cathode

 glow-type discharge and glow-to-spark transitions (completed and non-completed)

\[G = 0.1 \, \text{g/s} \ (v_{\text{gas}} = 4 \, \text{m/s}) \]

\[R_b = 13.6 \, \text{k}\Omega, \ C = 300 \, \text{pF} \]

\[V_0 = 3.2 \, \text{kV} \]

\[V_{\text{first}} \approx 350 \, \text{V} \]

\[V_{\text{second}} \approx 1200 \, \text{V} \]
What happens in the gap after the very first breakdown (more detailed waveforms)

\[G = 0.1 \text{ g/s} \ (v_{\text{gas}} = 4 \text{ m/s}) \]

\[R_b = 13.6 \text{ k}\Omega, \ C = 300 \text{ pF} \]

\[V_0 = 3.2 \text{ kV} \]

- **First stage:** Discharge is attached to coaxial part of the cathode

 (glow-type discharge and transitions to diffused channel regimes)
Discharge is attached to the end of the cathode (second stage)

- Glow-type discharge is accompanied by glow-to-spark transitions
- In most cases the transition is not completed (the high conductivity spark channel does not form)

\[G = 0.1 \, \text{g/s} \quad (v_{\text{gas}} = 4 \, \text{m/s}) \]
\[R_b = 13.6 \, \text{k\Omega}, \quad C = 300 \, \text{pF} \]
\[V_0 = 3.0 \, \text{kV} \]

Plasma torch is available at the exit of plasmatron

Average power dissipated in the torch is about 150 W
Illustration of the voltage and current for non-completed transition from glow to spark

- Resistance of the diffuse channel is much higher than impedance of LC circuit
- Discharge current has aperiodic form

$G = 0.1 \text{ g/s (} v_{\text{gas}} = 4 \text{ m/s)}$

$R_b = 13.6 \text{ k}\Omega$, $C = 300 \text{ pF}$

$V_0 = 3.0 \text{ kV}$
Illustration of the voltage and current for completed transition from glow to spark

- Resistance of the spark channel is much less than impedance of LC circuit
- Capacitance is discharged completely

\[R_b = 54 \, \text{k}\Omega, \quad C = 460 \, \text{pF} \]
\[V_0 = 3.0 \, \text{kV} \]
Illustration of the voltage and current for completed transition from glow to spark

- Resistance of the spark channel is much less than impedance of LC circuit
- Capacitance is discharged completely

$$R_b = 54 \text{ k}\Omega, \ C = 460 \text{ pF}$$
$$V_0 = 3.0 \text{ kV}$$
Illustration of the voltage and current for completed transition from glow to spark

- Resistance of the spark channel is much less than impedance of LC circuit
- Capacitance is discharged completely

\[R_b = 54 \text{ k}\Omega, \quad C = 460 \text{ pF} \]
\[V_0 = 3.0 \text{ kV} \]
End-on CCD frames of discharge image for different times (diffused channels)

\[G = 0.1 \text{ g/s (} v_{\text{gas}} = 4 \text{ m/s)} \]

\[R_b = 13.6 \text{ k}\Omega, \ C = 300 \text{ pF} \]

\[V_0 = 3.0 \text{ kV} \]
$G = 0.5 \text{ g/s (} v_{\text{gas}} = 20 \text{ m/s)}$

$R_b = 13.6 \text{ k}\Omega, C = 300 \text{ pF}$

$V_0 = 3.0 \text{ kV}$

- Glow-to-spark transition process is expressed distinctively. Spark channel results in complete discharging of the capacitance C
Discharge is attached to the end of the cathode (second stage)

Gas flow is increased up to 0.5 g/s

\[G = 0.5 \text{ g/s} \quad (v_{\text{gas}} = 20 \text{ m/s}) \]

\[R_b = 13.6 \text{ k}\Omega, \quad C = 300 \text{ pF} \]

\[V_0 = 2.5 \text{ kV} \]

Plasma torch is still available at the exit of plasmatron

- Glow-to-spark transition process is expressed distinctively
- In some cases discharge at the end of the cathode is extinguished and new breakdown occurs at a coaxial part of the cathode
Illustration of very first breakdown in plasmatron

Gas flow is increased up to 1.0 g/s

$G = 1.0 \text{ g/s (} v_{\text{gas}} = 40 \text{ m/s)}$

$R_b = 13.6 \text{ k}\Omega, \ C = 300 \text{ pF}$

$V_0 = 3.1 \text{ kV}$

- The same features of the discharge as for a low gas flow
What happens in the gap after the very first breakdown

- Increasing the gas flow leads to reducing the first stage of the discharge

\[G = 1.0 \text{ g/s (} v_{\text{gas}} = 40 \text{ m/s)} \]
\[R_b = 13.6 \text{ k} \Omega, \ C = 300 \text{ pF} \]
\[V_0 = 3.0 \text{ kV} \]
Discharge is attached to the end of the cathode (second stage)

Gas flow is increased up to 1.0 g/s

\[G = 1.0 \text{ g/s} \quad (v_{\text{gas}} = 40 \text{ m/s}) \]

\[R_b = 13.6 \text{ k}\Omega, \quad C = 300 \text{ pF} \]

\[V_0 = 3.0 \text{ kV} \]

- Glow-to-spark transition process is expressed extremely distinctively
- In some cases discharge at the end of the cathode is extinguished and new breakdown occurs at a coaxial part of the cathode

200-1200 µs
Current for the case of completed transition from glow to spark

$G = 1.2 \text{ g/s} \ (v_{\text{gas}} = 50 \text{ m/s})$

$R_b = 13.6 \text{ k}\Omega, \ C = 300 \text{ pF}$

$V_0 = 3.0 \text{ kV}$

- Oscillatory behavior of the current when glow-to-spark transition spark occurs
- High voltage probe does not reflect the voltage waveform with nanosecond time resolution

Spark channel
Current for the case of non-completed transition from glow to spark

- Aperiodic behavior of the current when glow-to-spark transition spark occurs
- Resistance of the diffuse channel is comparable with impedance of LC circuit

$G = 1.2 \text{ g/s (} v_{\text{gas}} = 50 \text{ m/s)}$

$R_b = 13.6 \text{ k}\Omega$, $C = 300 \text{ pF}$

$V_0 = 3.0 \text{ kV}$
Design of the trigger unit for the Tornado chamber

gas flow
anode
cathode
Voltage and current for different gas flows in trigger unit of the Tornado chamber

For $G = 0.2 \text{ g/s}$:

- $R_b = 13.6 \text{ k}\Omega$
- $C = 300 \text{ pF}$
- $V_0 = 4 \text{ kV}$

For $G = 1.5 \text{ g/s}$:

- $R_b = 13.6 \text{ k}\Omega$
- $C = 300 \text{ pF}$
- $V_0 = 4 \text{ kV}$
End-on CCD frames of the discharge image for different times and gas flows

1. $G = 0.2 \text{ g/s}, \ t_{\text{exp}} = 40 - 50 \text{ ms}$

2. $G = 1.5 \text{ g/s}, \ t_{\text{exp}} = 10 - 20 \text{ ms}$

3. $G = 1.5 \text{ g/s}, \ t_{\text{exp}} = 30 - 40 \text{ ms}$

4. $G = 1.5 \text{ g/s}, \ t_{\text{exp}} = 60 - 61 \text{ ms}$
Conclusion

• Glow-type discharge in plasmatron is accompanied by so-called glow-to-spark transition process. As a result the high-current nanosecond spark discharge pulses are superimposed on the low-current background glow discharge.

• Energy to the nanosecond spark discharge is delivered from the spurious capacitance of connecting cable C.

• The above regime is most efficient both for ignition and flame control.